在k-means或kNN,欧氏距离与曼哈顿测算对比

开课吧开课吧锤锤2021-02-04 10:02

在k-means或kNN,我们常用欧氏距离来计算最近的邻居之间的距离,有时也用曼哈顿距离,请对比下这两种距离的差别

人工智能面试

欧氏距离,最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中,如点 x = (x1,...,xn) 和 y = (y1,...,yn) 之间的距离为:

欧氏距离虽然很有用,但也有明显的缺点。它将样本的不同属性(即各指标或各变量量纲)之间的差别等同看待,这一点有时不能满足实际要求。例如,在教育研究中,经常遇到对人的分析和判别,个体的不同属性对于区分个体有着不同的重要性。因此,欧氏距离适用于向量各分量的度量标准统一的情况。

曼哈顿距离,我们可以定义曼哈顿距离的正式意义为L1-距离或城市区块距离,也就是在欧几里得空间的固定直角坐标系上两点所形成的线段对轴产生的投影的距离总和。例如在平面上,坐标(x1, y1)的点P1与坐标(x2, y2)的点P2的曼哈顿距离为:,要注意的是,曼哈顿距离依赖座标系统的转度,而非系统在坐标轴上的平移或映射。当坐标轴变动时,点间的距离就会不同。

通俗来讲,想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。而实际驾驶距离就是这个“曼哈顿距离”,这也是曼哈顿距离名称的来源, 同时,曼哈顿距离也称为城市街区距离(City Block distance)。

曼哈顿距离和欧式距离一般用途不同,无相互替代性。

人工智能在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。发展前景很可观,有对人工智能感兴趣的同学就赶快学习起来吧。以上就是小编今天为大家整理发布的“在k-means或kNN,欧氏距离与曼哈顿测算对比”一文,希望为正在学习人工智能的朋友提供学习参考,更多人工智能面试尽在开课吧广场人工智能面试频道!

有用
分享