学习python出来能做什么工作

开课吧开课吧锤锤2021-03-12 17:10

    大家学习Python是因为什么呢?是因为身边朋友的推荐,因为家中亲戚的炫耀,所以大家在走上Python或多或少是因为身边人的影响。拿今天就为大家介绍一下学习python出来能做什么工作。

py

    1.Python全栈工程师

    使用python相关工具和知识完成从前端页面的实现,到后台代码的编写,再到数据库的管理,一人可以搞定一个公司网站的所有事情,真正实现全栈开发。

    第一,Python语言基本语法。Python语言的基本语法掌握起来并不困难,甚至可以说非常简单,因为Python是脚本语言,所以语法也比较直接

    第二,Python做Web开发。

    Python是Web开发的传统三大解决方案之一(还包括Java和PHP),Web开发是全栈工程师必须掌握的内容。用Python做Web开发需要学习对应的框架,比如Django。

    第三,Python做数据分析。Python做数据分析是一个比较常见的应用场景,Python做数据分析需要学习对应的算法以及实现过程。会使用到的库包括Numpy、matplotlib等。

    第四,Python做爬虫。Python做爬虫应用是一个非常常见的应用,有大量的案例可以参考。

    第五,Python做机器学习类应用。Python目前在机器学习领域(人工智能相关)的应用非常普遍,所以对于Python全栈工程师来说,掌握机器学习相关的内容也是有必要的。需要掌握的算法包括决策树、朴素贝叶斯、回归、kNN分类等,同时需要掌握基本的线性代数和概率论相关知识。

    2.PythonWeb开发工程师

    前端开发工程师是Web前端开发工程师的简称,2007年才真正开始受到重视的一个新兴职业。Web前端开发技术是一个先易后难的过程,主要包括三个要素:HTML(标准通用标记语言下的一个应用)、级联样式表和JavaScript。

    前端开发工程师不仅要掌握基本的Web前端开发技术,网站性能优化、SEO和服务器端的基础知识,而且要学会运用各种工具进行辅助开发以及理论层面的知识,包括代码的可维护性、组件的易用性、分层语义模板和浏览器分级支持等。

    3.Python爬虫工程师

    互联网是由一个一个的超链接组成的,从一个网页的链接可以跳到另一个网页,在新的网页里,又有很多链接。理论上讲,从任何一个网页开始,不断点开链接、链接的网页的链接,就可以走遍整个互联网!这个过程是不是像蜘蛛沿着网一样爬?这也是“爬虫”名字的由来。

    作为爬虫工程师,就是要写出一些能够沿着网爬的”蜘蛛“程序,保存下来获得的信息。一般来说,需要爬出来的信息都是结构化的,如果不是结构化的,那么也就没什么意义了(百分之八十的数据是非结构化的)。爬虫的规模可大可小,小到可以爬取豆瓣的top250电影,定时爬取一个星期的天气预报等。大到可以爬取整个互联网的网页(例如google)。

    4.Python数据分析师

    数据分析师是专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。

    数据分析师是指基于大数据进行数据处理分析的人员,能熟练的用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总、理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析师在企业中发挥的价值在于能够利用已有的数据资料(一手或二手的)进行观测,实验,研究分析出背后的一套规律为企业进行优化决策。业务层面的员工需要写出数据报告给老板看,如果你的分析结果对企业决策(如营销计划)有改善从而提高了业绩,那么待遇肯定是意想不到的。

    此岗位重在“分析”,首先要有一定的数据灵敏度和数学底子,知道在什么样的数据规模下,需要看什么样的数据指标。了解常规的数据挖掘算法,可以使用一些工具得到预期的结果。当然用工具的话是需要公司系统支持一些数据分析软件的,SPSS啊,Clementine什么的,如果没有,说句难听的,弄个Excel表格在有些公司也叫数据分析师。当然有些数据分析师Excel玩儿的可以很溜,可以用Excel模拟一个CTR预估算法的迭代过程。

    岗位缺口大:未来中国基础性大数据人才缺口将达到1400万,数据分析人才需求将达150万;

    就业薪资高:初入职场的分析师薪资可达13000元/月左右,2年以上工作数据分析师薪资高达30000元/月以上。

    就业前景广:结合互联网、金融、科技、城市管理等方向数据业务,成为业务数据分析师;后期往数据挖掘工程师、数据工程师、数据科学家、Al工程师等方向发展。

    5.Python数据挖掘师

    偏技术,偏算法,重模型,需要很深的代码功底,要码很多代码。通过建立模型、算法、预测等提供一些通用的解决方案,当然也有针对某业务的。岗位重点是要“挖掘”,所以对于人的要求就是要熟悉挖掘的方法,挖掘的工具,或者至少知道在什么平台应该用什么工具,面对什么样的需求应该怎么解。

    数据挖掘:高等数学,数值分析,线性代数,凸优化,运筹学(这些是基本)数字信号处理,模式识别,矩阵论(进阶)。

    总的来说,代码能力强直接搞算法,弱就先做数据分析。

    6.Python机器学习工程师

    观察数据--->找特征--->设计算法--->算法验证--->洗数据--->工程化--->上线看效果--->goto观察数据

    算法工程师需要具备哪些技能:

    数据敏感性,观察力

    数学抽象能力,数学建模能力和数学工具的熟练使用的能力

    能随手编脚本代码的能力,强大的计算机算法编程能力,高级开发工程师的素质

    想象力,耐性和信心,较强的语言表达能力,抗打击能力

    然后,还有很关键的一点,你需要很聪明。

    7.数据处理工程师

    1.参与数据仓库/数据集市的逻辑与物理数据模型设计,负责源系统数据探索与数据映射。

    2.负责数据仓库/数据集市的临时提数需求,按需要完成一定复杂程度的统计分析与数据探索。

    3.根据分析方案设计数据支撑需求,获取、整理、清洗和转换数据,以满足分析建模的输入要求。

    8.推荐系统工程师

    工作职责:负责推荐引擎的研发和重构,在高并发和复杂业务场景下,提升推荐系统的各项指标,保障在线服务的稳定性。

    9.推荐系统架构师(有点高端,得好好努力了)

    岗位职责:

    1.参与项目的需求分析、概要设计、详细设计,技术文档的编写;

    2.负责开发框架的搭建、改进,以及开源组件的评估和引进;

    3.指导软件工程师的日常开发工作,解决开发中的技术问题;

    4.协助完成项目的测试、系统交付工作,对项目实施提供支持。

    5.负责跟进服务器安全、稳定、维护和性能优化等工作;

    以后就是学习python出来能做什么工作的全部内容,更多Python相关内容尽在开课吧广场Python问答频道。

有用
分享