深度学习技术发展趋势解析

开课吧小一2021-05-06 15:53

当前,人工智能发展借助深度学习技术突破得到了全面关注和助力推动,各国政府高度重视、资本热潮仍在加码,各界对其成为发展热点也达成了共识。接下里小编带你一起看看深度学习技术发展趋势。

深度学习技术发展趋势解析

1、深度学习技术现状:深度学习是本轮人工智能爆发的关键技术。人工智能技术在计算机视觉和自然语言处理等领域取得的突破性进展,使得人工智能迎来新一轮爆发式发展。而深度学习是实现这些突破性进展的关键技术。其中,基于深度卷积网络的图像分类技术已超过人眼的准确率,基于深度神经网络的语音识别技术已达到95%的准确率,基于深度神经网络的机器翻译技术已接近人类的平均翻译水平。准确率的大幅提升使得计算机视觉和自然语言处理进入产业化阶段,带来新产业的兴起。

2、深度学习发展趋势:深度神经网络呈现层数越来越深,结构越来越复杂的发展趋势。为了不断提升深度神经网络的性能,业界从网络深度和网络结构两方面持续进行探索。

深度学习技术发展趋势解析

3、未来发展建议:加强图网络、深度强化学习以及生成式对抗网络等前沿技术研究。由于我国在深度学习领域缺乏重大原创性研究成果,基础理论研究贡献不足,如胶囊网络、图网络等创新性、原创性概念是由美国专家提出,我国研究贡献不足。

加快自动化机器学习、模型压缩等深度学习应用技术研究。依托国内的市场优势和企业的成长优势,针对具有我国特色的个性化应用需求,加快对深度学习应用技术的研究。加强对自动化机器学习、模型压缩等技术的研究,加快深度学习的工程化落地应用。加强深度学习在计算机视觉领域应用研究,进一步提升目标识别等视觉任务的准确率,以及在实际应用场景中的性能。加强深度学习在自然语言处理领域的应用研究,提出性能更优的算法模型,提升机器翻译、对话系统等应用的性能。

以上就是小编为大家整理的“深度学习技术发展趋势解析”一文,更多相关信息尽在开课吧AI人工智能教程频道。

相关推荐:

免费领完整的AI学习路径资料,带你轻松入门!

AI资料难找吗?AI免费论文资料,等你领取!

福利来袭!人工智能核心课程优惠名额等你来领

有用
分享