机器学习如何与信道建模进行有机结合?

开课吧小一2021-06-11 15:00

点赞
有用
分享分享

    随着人工智能的高速发展,人工智能技术也得到了广泛的应用。机器学习作为人工智能的主要分支,在很多行业中也得到了应用,这就包括信道建模。那么机器学习如何与信道建模进行有机结合?

机器学习如何与信道建模进行有机结合?

    信道建模是设计无线通信系统的基础,传统的信道建模方法无法自动学习特定类型信道的规律,特别是在针对特殊应用场景,如物联网、毫米波通信、车联网等,存在一定的局限性。

    1、信道多径分布及参数估计。在MIMO中出现了以簇为核心的信道模型,这是因为研究簇的特性可以简化建模过程。簇是一组具有相似的时延、角度等参数的多径分量(MPC,multipathcomponent),因此,为了在接收端识别出簇,需要一种与多径传播特性相对应的聚类算法,从而提高簇核心模型的精度。自动聚类算法(如k-powermeans算法)近年来得到了广泛应用,但仍然需要簇的数量等先验假设信息。信道建模需要从大量实测数据中提取表征信道衰落特性的各个关键特征参数的随机分布,再根据信道特征参数的随机分布来量化各个参量,在这些参量的基础上构建的信道模型才能真正体现和反映真实信道传输的特性,进而通过信道参数估计算法来提取信道特征的关键技术。随着无线通信的发展,信道特征的维度由最初的时–频二维扩展到时–频–空三维,所需提取的参数的数据量呈现出爆炸式增长,这给传统的信道参数估计带来了很大挑战。然而许多分簇算法需要在聚类之前通过高分辨率参数估计算法提取MPC,这些算法的计算复杂度普遍较高,难以在时变信道中进行实时操作。因此,基于机器学习的MPC自动聚类算法和参数估计算法受到了广泛的关注。

机器学习如何与信道建模进行有机结合?

    2、信道模型构造。5G及未来通信系统将支持更大规模的天线阵列、更高的频段、更大的带宽及更加复杂多样的应用场景,信道数据量也随之激增。传统的基于簇的统计性建模方法较难找出抽头簇与实际散射体之间的映射关系;确定性建模方法预测准确但复杂度高,且依赖于环境信息精度。随着人工智能的飞速发展,国内外提出了基于神经网络(NN,neuralnetwork)和基于簇核的信道建模方法。前者利用神经网络在描述数据特征和提取系统输入与输出之间的映射关系展现出良好的性能,可以使用实测数据集对神经网络进行充足的训练,从而模拟实际场景的无线信道,寻找输入层变量和输出层信道特征参数的相互关系。该方法利用了神经网络自学、自适应和非线性拟合的特点,这对时变信道的建模特别重要,尤其是在分析实际信道数据时可以减少重新建模的成本。后者利用机器学习算法从海量信道数据中挖掘信道特性,找到统计性簇和确定性散射体之间的匹配映射关系,并通过有限数量有物理意义的簇核进行信道建模。该方法同时结合了统计性建模和确定性建模的优势,既解决了确定性模型复杂度高的问题,又解决了统计性模型缺乏物理含义的问题。

    3、信道状态分类/场景识别。信道状态分类/场景识别是信道建模和通信系统部署的重要依据,不同场景下的信道模型也不一致。另外,由于信道的复杂性,实际测量所需的时间长且难度高,那么精确的信道场景识别对系统进行分析和评估可以大大提高工作的效率。然而,在传播环境多变的情况下,使用基于单一度量的假设检验对场景进行分类是不够准确的;另一方面,一些机器学习算法对于数据的分类具有很大的优势,比如支持向量机(SVM,supportvectormachine)、神经网络、随机森林、决策树等。在这种情况下,学习和提取不同场景下的信道属性差异有助于自动将测量的数据分类到不同场景中,建立相应的信道模型,并发现用于资源分配、系统优化或本地化的场景特征。

    以上就是小编为打击整理的“机器学习如何与信道建模进行有机结合?”一文,更多相关信息尽在开课吧人工智能教程频道。

相关推荐:

2021大厂高频面试题精选,0元免费领

福利来袭,C++经典项目实战免费领取!

职场进阶必备,数据分析职业能力特训营

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用。如涉及版权问题,请联系本站管理员予以更改或删除。
有用
分享