深入了解机器学习技术的发展与结构搜索的诞生

开课吧小一2021-06-11 17:46

点赞
有用
分享分享

    随着人工智能技术的不断完善,想要快速入门人工智能行业,就需要大量的人工智能相关信息。接下来小编带你了解一下,机器学习技术的发展与结构搜索的诞生。

深入了解机器学习技术的发展与结构搜索的诞生

    伴随着人工智能技术的飞速发展,语音识别、机器翻译等各项科技名词已不是传统意义上被企业家束之高阁的前景应用,更不是研究人员讳莫如深的复杂概念,它们已经伴随着大数据时代的来临走入了寻常人的身边。如今的生活中我们无处不在享受着人工智能技术带给我们的便利

    通俗来讲,它是一种对外部输入信息进行学习的数学模型或计算模型。它能够通过对自身内部结构的调整来拟合输入数据,凭借着算法广泛的通用性,其在语音、图像、自然语言处理等众多领域得到了广泛的应用。

    而对于目前的基于神经网络技术的各项任务而言,主要的过程依旧是由研究人员手动地探索新的网络结构,比如我们常见的循环神经网络(Recurrentneuralnetwork;RNN)、卷积神经网络(ConvolutionalNeuralNetwork;CNN)等。但这样做实际上是一个非常系统工程的方式,我们把研究人员束缚在岗位上不断地去“设计”所谓的更好的结构,而模型的好与坏则往往取决于人对任务的理解以及模型设计上的想象力,整个过程需要研究人员对相关领域有着充分的认知,间接提高了从业人员的入门门槛,与此同时通过人工不断地对模型结构进行改良也非常耗费时间。

深入了解机器学习技术的发展与结构搜索的诞生

    随着近年来计算机设备的算力以及存储能力逐年递增,人们逐渐开始去思考是否我们可以让计算机像学网络参数一样学习神经网络模型的结构?希望能通过这种方式将研究人员从模型结构设计者的位置上“解救”出来,于是就有了这样一个机器学习领域的研究分支—网络结构搜索(NeuralArchitectureSearch;NAS)。

    实际上目前神经网络结构搜索技术已经在各个领域中崭露头角,如谷歌团队在SearchingforActivationFunctions论文中通过对激活函数空间进行搜索发现了Swish函数,相对诸如Relu等传统人工设计的激活函数具有更快的收敛速度。而微软团队在WMT19机器翻译评测任务中同样也采用了其团队提出的NAO方法来自动地对神经网络结构进行优化,在英语-芬兰语以及芬兰语-英语的任务上均取得了不俗的成绩。

    可以看到网络结构搜索技术的使用已经为各项任务中模型结构的设计起到非常好的助力,那么其背后究竟使用了怎样的技术?如何能够让神经网络自动地对自身结构进行改良?虽然目前网络结构的搜索技术依旧方兴未艾,但已然存在很多来自工业界以及学术界的团队在不断努力探索更好的方法。

    可以预计在不远的将来,随着科研人员的努力以及计算资源的进一步提升,网络结构搜索的技术将大幅降低模型结构的更迭所需要的时间周期,同时能够让研究人员有更多地精力去探索有趣的应用或讨论神经网络背后的可解释性。

深入了解机器学习技术的发展与结构搜索的诞生

    传统机器学习。如果我们将机器学习所处理的任务建模为一种从输入到输出的映射学习,那么在初代的机器学习算法中,我们不仅需要设计一种适用于当前任务的方法(如广泛使用的决策树、支持向量机等),同时还要为其提供人工设计的特征集合,在完成这些工作之后,才能使用数据对模型中的参数进行调优。

    深度学习。随着深度学习技术的广泛普及,人们开始尝试将提取特征的过程交由模型来自动完成,通过数据驱动的方式减少传统方法中特征遗漏的问题。比如说对于图像处理任务而言,我们无需根据人工经验对图像中的局部特征进行设计,只需要直接将画面完整地送入模型中进行训练即可。

    深度学习&网络结构搜索。深度学习技术的到来使得原本由人工进行的特征提取过程交由机器自动完成,允许模型根据自身需求从原始数据中进行特征的捕获,通过这种数据驱动的方式有效降低了人工抽取所带来的信息丢失风险。但当我们回顾整个深度学习系统,实际上其依旧并非我们期望的完全自动化的过程,在模型结构的设计上仍然非常依赖行业专家面向任务对模型结构进行设计。

    以上就是小编为大家整理的“深入了解机器学习技术的发展与结构搜索的诞生”一文,更多相关信息尽在开课吧人工智能教程频道。

相关推荐:

2021大厂高频面试题精选,0元免费领

福利来袭,C++经典项目实战免费领取!

职场进阶必备,数据分析职业能力特训营

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用。如涉及版权问题,请联系本站管理员予以更改或删除。
有用
分享