深度学习应该学习哪些知识?

slime2021-08-31 11:43

深度学习着重掌握卷积神经网络和循环神经网络,使用大量真实的数据集,结合实际场景和案例介绍深度学习技术的应用范围与效果。

深度学习应该学习哪些知识?

1、神经网络入门及深度学习环境配置:

熟悉神经网络领域的常用术语、安装并配置深度学习框架Tensorflow,学会用Tensorflow解决一个实际问题。

2、神经网络基础及卷积神经网络原理:

使用不同结构的神经网络结构验证网络结构对效果的影响;了解卷积神经网络的相关概念和基础知识,并通过实战案例理解CNN局部相关性与权值共享等特性。

3、卷积神经网络实战:

图像分类及检测任务:学习图像分类任务及检测任务目前主要模型算法,并通过两个实战案例学习在Tensorflow框架下训练CNN模型。

深度学习应该学习哪些知识?

4、卷积神经网络之图像分割实例:

掌握分割任务简介、反卷积(deconv/transpose-conv)、FCN

5、循环神经网络原理:

RNN基本原理

门限循环单元(GRU)

长短期记忆单元(LSTM)

词向量提取:Word2Vec

编码器—解码器结构

注意力机制模型:Attention Model

图片标注(Image Captioning)

图片问答(Visual Question Answering)

以上就是小编为大家整理的“深度学习应该学习哪些知识?”一文,更多相关信息尽在人工智能教程频道。

相关推荐:

2021如何成为更值钱的数据型人才,课程特惠0元领

产品经理如何做好产品规划

AI入门必备资料,人工智能必读书单

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用。如涉及版权问题,请联系本站管理员予以更改或删除。
有用
分享