数据分析师需要具备完整的知识结构

slime2021-10-22 14:14

作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构。

数据分析师需要具备完整的知识结构

1、数据采集

了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会帮助数据分析师更有针对性的控制数据生产和采集过程,避免由于违反数据采集规则导致的数据问题;同时,对数据采集逻辑的认识增加了数据分析师对数据的理解程度,尤其是数据中的异常变化。

2、数据存储

无论数据存储于云端还是本地,数据的存储不只是我们看到的数据库那么简单。

3、数据提取

数据提取是将数据取出的过程,数据提取的核心环节是从哪取、何时取、如何取。

从哪取,数据来源—不同的数据源得到的数据结果未必一致。

何时取,提取时间—不同时间取出来的数据结果未必一致。

如何取,提取规则—不同提取规则下的数据结果很难一致。

数据分析师需要具备完整的知识结构

4、数据挖掘

数据挖掘是面对海量数据时进行数据价值提炼的关键,以下是算法选择的基本原则:

没有最好的算法,只有最适合的算法,算法选择的原则是兼具准确性、可操作性、可理解性、可应用性。

没有一种算法能解决所有问题,但精通一门算法可以解决很多问题。

挖掘算法最难的是算法调优,同一种算法在不同场景下的参数设定相同,实践是获得调优经验的重要途径。

5、数据分析

数据分析相对于数据挖掘更多的是偏向业务应用和解读,当数据挖掘算法得出结论后,如何解释算法在结果、可信度、显著程度等方面对于业务的实际意义,如何将挖掘结果反馈到业务操作过程中便于业务理解和实施是关键。

6、数据展现

数据展现即数据可视化的部分,数据分析师如何把数据观点展示给业务的过程。数据展现除遵循各公司统一规范原则外,具体形式还要根据实际需求和场景而定。

7、数据应用

数据应用是数据具有落地价值的直接体现,这个过程需要数据分析师具备数据沟通能力、业务推动能力和项目工作能力。

以上就是小编为大家整理的“数据分析师需要具备完整的知识结构”一文,更多相关信息尽在数据分析教程频道。

相关推荐

AI入门,从每个人都应该学的AI第一课开始!

人工智能论文体系,助你快速入门AI

Vue3.0从入门到精通

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用。如涉及版权问题,请联系本站管理员予以更改或删除。
有用
分享