常用的数据分析技术有哪些?

筱雪2021-11-15 18:23

  了解了数据分析的相关概念之后,我们来看一看关于常用的数据分析技术有哪些?不知道你了解不了解,不管你熟悉也好不知道也好,我们就跟随小编一起来看看吧!

  Analytic Visualizations(可视化分析)

  不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。

  Data Mining Algorithms(数据挖掘算法)

  可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。

常用的数据分析技术有哪些?

  Predictive Analytic Capabilities(预测性分析能力)

  数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。

  Semantic Engines(语义引擎)

  由于非结构化数据的多样性带来了数据分析的新的挑战,需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。

  Data Quality and Master Data Management(数据质量和数据管理)

  数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

  以上就是小编为大家整理的“常用的数据分析技术有哪些?”一文,更多相关信息想要了解提升更多内容,前往数据分析教程频道查看!

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用。如涉及版权问题,请联系本站管理员予以更改或删除。
有用
分享