数据分析师常见的种类都有哪些?(数据分析师需要具备哪些能力?)

呵呵哒2022-04-11 16:39

数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析、并依据数据做出行业研究、评估和预测的专业人员。

数据分析师常见的种类都有哪些?(数据分析师需要具备哪些能力?)

数据分析师常见的种类都有哪些?

1.数据产品经理

在产品经理的能力基础上,增加数据思维。数据产品经理不仅懂得埋点原理,能够通过抓包等工具抓取数据并进行分析。同时还能够参与数据化产品的制作,如BI报表、CRM系统、AB test试验后台等。

比如老板想搭建一个用户行为监测平台,这时就需要根据老板的需求,转化为详细的技术需求,提给技术去开发,这就是数据产品经理的日常。

2.数据分析师

这就是我们常说的商业化数据分析师,主要负责0-1搭建可视化监控报表,利用数据挖掘和洞察业务,为需求部门提供数据支撑、分析报告、商业化模型等服务,这里面的核心是监控、挖掘、有价值和服务,在公司里担任领导的眼睛与大脑的角色。

3.数据建模师

数据建模师也叫算法工程师,是数理统计知识、编程与业务思维集一身的模型大师,通过建立数学模型、利用算法实现增长,可以说是一家产品的灵魂工作者,比如信息流产品的推荐算法、金融行业的反欺诈和信用评级等。

4.数据工程师

数据工程师的职能更偏向技术工程,主要的工作职责是搭建数据仓库、创建ETL、进行数据治理、数据安全等方面的工作、通过提升运行速度,优化数据结构,更好地服务于数据使用方,比如数据分析师、数据产品经理及数据建模师等。

5.数据科学家

综合性人才,数据分析能力、统计学基础、业务能力、算法与沟通能力集聚一身的人才。包含以上所有的技术与能力。

成为数据分析师需要具备哪些能力?

1.业务能力

数据分析最终只有解决业务问题分析才能真正创造价值,即数据分析师需要具备业务能力,而企业每一项业务本质上是公司整体战略的支撑,因为数据分析师首先要理解了战略,才能选对分析思路的方向。

其次要对自己的行业有足够敏感度,及充分理解行业。即多与业务部门核心团队进行沟通,多关注行业网站,多阅读行业数据分析报告做好积累,比如处于什么阶段,自己所在的位置,当前的重点业务方向在哪里,碰到了哪些挑战,总体的解决思路是什么。

最后还需要具备业务岗位的实战经验,对于业务的理解不是简单的看文档就可以的,一定来自于对于公司业务的实际流程、机制、平台、数据等的充分的理解,最好在实际相关岗位实践过。

2.数据能力

作为数据分析师,首先需要理解企业的数据指标,每个企业企业都有一套KPI指标体系,围绕KPI指标还有一系列的执行监控指标,作为数据分析师一定要对企业的核心指标体系有深入的理解,要能从本质上区分指标的差异,就得对指标的生成过程有透彻的理解,包括从哪个表,哪个字段层层计算汇总而来。

其次要拥有全局的数据视野,即在大多数公司里,数据分析师的工作是专业化的,但其实你分析要的数据是全方位的,不会有划定的专业边界。在实践中,数据分析师往往不知道到底有多少数据,其数据分析的深度和广度由于其视野的狭窄而受限,数据分析师应对数据字典进行系统的学习,自底向上的实践很重要,但自顶向下的学习也很必要。

最后还需要具备了解数据的深度,数据字典体现的往往只是表层的数据含义,如果你希望分析的更为灵活,就需要理解数据之间的依赖关系和来龙去脉,因为每张数据表都是由下一层次的表关联汇总而成,但汇总意味着信息的丢失,只有具备追根溯源的能力,你才更有可能基于更多的信息获得更大的分析自由度,比如看到业务系统上某个菜单的功能,需要对应到系统中的数据是怎样的。

3.技术能力

作为数据分析师,当然还是需要有必要的技能傍身,比如精通SQL、数据库原理、Excel/报表/BI工具技能。除此以外,上下游技术领域,比如数据仓库、数据架构、ETL,需要了解甚至会用,比如:

(1)SQL是最灵活的操作数据的语言,任何一个数据库都会提供SQL的支持,它架起了业务和数据的桥梁,简单易学,性价比很高,也是数据分析师的必须要学习的语言。

(2)EXCEL提供了最为灵活的轻量级数据的加工和呈现的能力,对于EXCEL的掌握是任何数据分析师的基本功,透视图,图表,公式,计算都是极其方便的工具。

(3)BI很大程度上就是用一些可视化技术来进行指标比较的艺术,有助于你更快、更直观的发现问题和定位问题,毕竟人脑对图表、图像的敏感度更高。

(4)数据挖掘技术,比如聚类,分类,预测等等随着机器学习,人工智能工具使用门槛的降低,数据分析师要掌握至少一种挖掘的方法。懂得如何构建模型,尤其是在金融、运营商、互联网、零售等这些数据成熟度较高的行业。

4.沟通能力

对数据分析师来说,沟通能力是非常重要的,因为很多项目需要上层来推动,然后配合的时候需要各业务部门领导去配合你理清需求里数据,执行的时候又需要技术、业务整个链条的配合。

沟通本质还是为了解决问题。明确沟通目的,逻辑清晰的表达,然后站在对方考虑知道对方要什么,沟通也没那么困难。

比如对上沟通,要抓住一切机会去沟通清楚分析的目的到底是什么,领导有什么预期,与此同时,你也需要面对不同的岗位,碰到不同的角色,采用不同的语言,表达你的要求和获得你需要的东西,例如业务如何理解?如何让数据取得更快?发现数据问题如何尽快的确认原因?都考验着你的实际人脉和权威。

除此以外,数据分析师还有一个重要的表达,就是汇报数据分析成果,要学会将问题和分析场景串联起来讲故事,要能通过量化的数字和生动的场景来宣导数据的价值。

以上就是小编为大家整理发布的“数据分析师常见的种类都有哪些?(数据分析师需要具备哪些能力?)”一文,更多相关内容尽在开课吧广场-数据分析频道。

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用。如涉及版权问题,请联系本站管理员予以更改或删除。
有用
分享
全部评论快来秀出你的观点
登录 后可发表观点…
发表
暂无评论,快来抢沙发!
Hello,World公开课