数据分析里最常用的思维定式

slime2022-04-24 18:00

在数据分析中,数据分析思维是框架式的指引,在一些通用的分析场景下可以快速使用,而且对未来构建数据分析模型也有帮助。

数据分析里最常用的思维定式

指标思维

我们平时表达内容基本可以分为事实和观点两部分,事实不可否认,而观点则可以不认同,但是大部分人很容易将事实和观点混淆

数据分析的工作中也是如此,我们做数据分析的目的是为了提升公司的决策水平,如果不能描述客观事实,那么信息在沟通过程中很容易变形。

结构化思维

归纳其实就是把复杂问题分解成多种单一因素的过程,并且将这些因素加以归纳和整理,使之条理化、纲领化。这个过程犹如抽丝剥茧,将一团乱麻理地条条顺顺。

漏斗思维

漏斗思维是通过确定关键环节,进而完成一套流程式分析的思路,在各行各业都有相应的应用,如注册转化率的分析、用户浏览路径的分析、流量监控等。

象限法

通过对两种维度的划分,运用坐标的方式表达出想要的价值,由价值直接转变为策略,从而进行一些落地的推动。象限法是一种策略驱动的思维,广泛应用于战略分析,产品分析,市场分析,客户管理,用户管理,商品管理等。

多维法

多维法是指对分析对象从多个维度去分析,这里一般是三个维度,每个维度有不同数据分类,这样代表总数据的大正方体就被分割成一个个小方块,落在同一个小方块的数据拥有同样的属性,这样可以通过对比小方块内的数据进行分析。

对比思维

对比主要分为以下几种:

横切对比:根据细分中的横切维度进行对比,如城市和品类

纵切对比:与细分中的纵切维护进行对比,如漏斗不同阶段的转化率

目标对比:常见于目标管理,如完成率等

时间对比:日环比,周月同比;7天滑动平均值对比,7天内极值对比

维度思维

钻取:在维的不同层次间的变化,从上层降到下一层,或者说是将汇总数据拆分到更细节的数据,比如通过对2018年华为的总销售数据进行钻取来查看各个手机型号的销售数据。

上卷:钻取的逆操作,即从细粒度数据向高层的聚合。如将江苏省、上海市和浙江省的销售数据进行汇总来查看江浙沪地区的销售数据。

切片:选择维中特定的值进行分析,比如只选择苹果手机的销售数据,或2017年的手机销售数据。

切块:选择维中特定区间的数据进行分析,比如选择2016年2017年的销售数据。

旋转:即维的位置的互换,就像是二维表的行列转换,如图中通过旋转实现产品维和地域维的互换。

以上就是小编为大家整理发布的“数据分析里最常用的思维定式”一文,更多相关内容尽在开课吧广场-数据分析频道。

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用。如涉及版权问题,请联系本站管理员予以更改或删除。
有用
分享
全部评论快来秀出你的观点
登录 后可发表观点…
发表
暂无评论,快来抢沙发!
Hello,World公开课