如何使机器学习在网络防御中发挥作用

slime2022-05-06 00:05

机器学习将是网络防御者应对网络攻击的重要武器之一。但是,安全地部署机器学习型系统需要网络防御者持续管理此类系统的动态平衡行为。相关的政策和战略应帮助网络防御者有理有据地对机器学习的特性进行取舍。政府希望塑造新兴的机器学习型网络安全生态系统的发展轨迹,从而改善网络防御者的处境,对此,本节提出以下3点建议以供参考。

如何使机器学习在网络防御中发挥作用

将安全性融入机器学习型网络安全应用程序的设计和开发过程中

一般来说,机器学习型应用程序的开发是以最有效的方式、最大限度地提高准确性为目标的。为实现网络安全,机器学习型系统不仅需要做出准确的预测,还需要在不断变化的环境条件和对抗性干扰的持续压力下进行可靠的预测。要想克服这些挑战,就要创造一种适应于网络安全背景下的“动态—对抗性学习模式”。在设计、测试到部署和更新的过程中,始终将安全性视为“循环往复的过程”的整体方法,而稳固性和准确性均是其优先考虑的因素。

将这一方法付诸实施需要融合机器学习安全和网络安全来进行研究,主要体现在3个研究领域。一是通过为特定的网络安全应用程序开发现实的威胁模型来理解威胁。防御者需要评估相对威胁,例如,一些攻击者能够直接试探已部署的机器学习型系统,与之相对的是另一些攻击者可能只能间接了解上述模型。二是确定关键的稳固性,并开发度量和验证它们的方法。具体来说,开发人员需要通过各种技术来证明“全局”的稳固性不会因部署过程中的模型学习变化而失效。一位专家将机器学习的安全现状与20世纪20年代的密码学进行了比较:不仅最安全的系统很容易被打破,研究人员甚至缺乏正确评估安全性的指标。三是开发更广泛的系统级防御,以检测或防止可能破坏模型的攻击。这些措施包括检测试图试探系统的行为,并防止系统向试图对其进行逆向工程研究的攻击者“泄露”信息。整体防御方法既需要减少模型中的漏洞,又需要采取措施防止攻击者发现和利用仍然存在的漏洞。

通过系统多样性和冗余性提高弹性

网络防御将受益于对机器学习创新方法的进一步研究,这些创新方法在系统的设计和实施中融入了多样性和冗余性。例如,网络安全供应商F-Secure的“BlackfinProject”寻求开发多个机器学习型智能体,对网络环境的不同方面进行建模,并通过协同工作以识别网络入侵。通过把依赖于不同模式或不同感知方式的多个模型组合在一起,所产生的系统可能比检视相同数据的一堆模型更不易受到欺骗。

即使有了更好的工具来提高稳固性,机器学习型系统也不会万无一失。如上所述,供应商通常依赖多种工具和技术,包括基于机器学习的工具和技术。但是,随着对机器学习型系统的日益依赖,决策者必须确立各种风险容忍阈值,以指导在何处如何依赖机器学习型系统,以及何时使用非机器学习工具和保障措施以作为补充。

警惕战略竞争对手企图破坏机器学习的发展

网络防御者对机器学习的依赖将大大吸引对手(尤其是试图利用机器学习展开网络行动的国家行为体)设法扰乱机器学习的发展过程。即使只知道目标模型的参数、体系结构或训练数据和方法的一部分,也将会降低攻击机器学习型系统的难度。

在技术层面上,网络攻击者将设法获取培训数据集,渗透进商业项目或开源项目,或者简单地通过购买产品进行逆向工程研究,以此寻找机会获取有关机器学习型系统内部工作方式的情报。他们甚至可能在模型中插入后门,而这些后门会随模型进入部署的防御系统中,从而破坏机器学习型系统。

在战术层面上,防御的成功与否将取决于政府和私营部门之间的协调,更具体地说,将取决于能否通过这种协调,在部署防御系统之前就预测和挫败旨在那些极具破坏性的攻击行动。供应商必须仔细检查和保护对其服务完整性至关重要的数据和组件。政府机构应探讨如何努力确保供应链的安全,并防止网络攻击者获取包括机器学习能力在内的敏感技术和数据。

以上就是小编为大家整理的“如何使机器学习在网络防御中发挥作用”一文,更多相关信息尽在开课吧广场人工智能资讯频道。

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用。如涉及版权问题,请联系本站管理员予以更改或删除。
有用
分享
全部评论快来秀出你的观点
登录 后可发表观点…
发表
暂无评论,快来抢沙发!
AI项目实战精讲